

Building a Private Cloud for Umeå University

Ingemar Fällman

What is a private cloud?

The cloud definition

- → On-demand self-service
- → Broad network access
- → Resource pooling
- → Rapid elasticity
- → Measured service

As defined by the US National Institute of Standards and Technology

Why build a private cloud?

Primary drive factors

- Automation = Fewer administrative tasks
- Faster delivery time = More productivity
- A self service portal for X as a service
- On premise = More control
- A service catalog
- Better governance
- Better use of the infrastructure

Reducing administrative overhead

Designing the private cloud

Requirements for a private cloud

- A self-service portal
- Monitoring tools
- Automation tools
- Cost efficient, scalable, reliable virtualization infrastructure

A self-service portal

- vCloud Director
 - Don't use, use vCloud Automation Center says
 VMware since 2013.
- vCloud Automation Center
 - Can connect to public clouds
 - Included with our vCloud licenses
- OpenStack requires more work to implement

Monitoring tools

- VMware Operations Manager
 - Included in the vCloud licenses.
 - Oversized and undersized VM:s reports
 - Capacity planning
 - Monitors health status
 - Can automate deployment based on load
- Ms System Center Operations Manager
 - Using Veeam Management pack

Automation tools

- VMware vCenter Orchestrator
 - For advanced deployments
- Microsoft Orchestrator
 - To manage roles, group memberships in Active Directory etc.
- Bash/Perl/Python scripts
 - for Linux deployment and auto-configuration

Cost efficient, scalable, reliable hypervisor

- VMware vSphere hypervisor
 - Perpetual license model
 - Scale up host model to keep licence costs down
 - High availability and DRS
 - Stretched cluster spanning over two sites

Cost efficient, scalable, reliable network

- Cisco Nexus 1000V
 - Software defined networking
 - Fits into our existing Cisco network infrastructure

Cost efficient, scalable, reliable storage

- DataCore SANsymphony-V
 - Software defined storage
 - X86 hardware
 - Multi-tier storage with auto tiering
 - Synchronous replication of data between sites
 - Converged network infrastructure
 - Perpetual license model and/or subscription

Cost efficient, scalable, reliable disaster recovery/backup

- Veeam Backup & Replication
 - Provide Basic backup for all VM:s
 - Used as disaster recover in case of SAN failure.

A software defined datacenter

Automating the deployment

- Identify VM types define services
- Document the tasks needed to create a VM
- Write scripts to automate sub-tasks
- Run the scripts manually for a while
- Automate the process and make it available for order in the self-service portal

Where do we go from here?

- Our self-service portal is in final testing stages.
- Hybrid cloud
- Community cloud
- Platform as a service, PaaS
- Desktop as a service, DaaS
- X as a service

Thank you

Questions?