Educational Data Mining: Preliminary results at University of Porto

Pedro Strecht João Mendes Moreira Carlos Soares

EUNIS Business Intelligence Conference March 6TH-7TH 2014 Paris

Summary

- Data Analysis in Education
- ... at the University of Porto
- An illustrative example of an EDM task
- Conclusions and Future work

Data Analysis in Education

- For a few decades higher education institutions manage their data using University Information Systems (UIS)
- The growing adoption of UIS allowed research to move towards automatic knowledge discovery from academic databases
- Over the past 10 years there has been an increase on research using data mining techniques to discover phenomena in the data
- An example of application of data mining is:
 - Predicting the success or failure of student enrolled in a course
 - Learning the reasons behind it

University of Porto

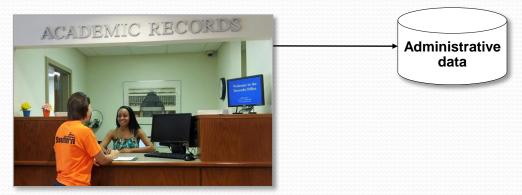
Founded in 1911

- 14 faculties, 1 business school
- ~700 study programs
- ~32 000 students, ~2 000 teachers and researchers, ~1 800 administrative staff
- University Information Systems began being developed in-house and explored since 1992
- The SIGARRA system had a major improvement in 2012 which prompts the University to improve their processes using BI and DM

Data Analysis in Education

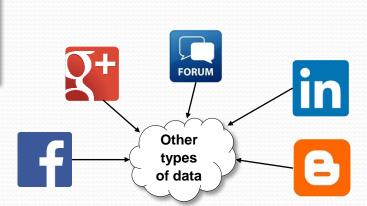
Educational big data

Academic information



Teaching and learning environments

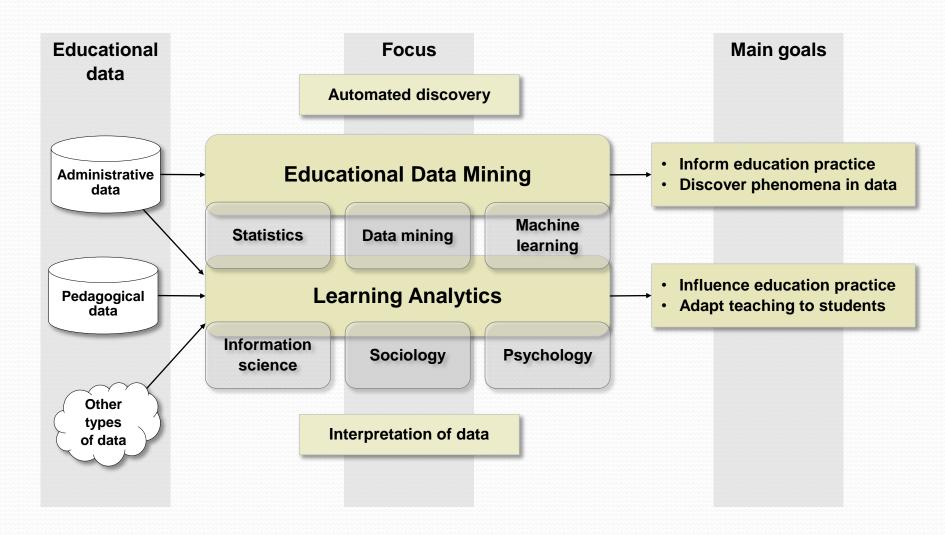
Others sources



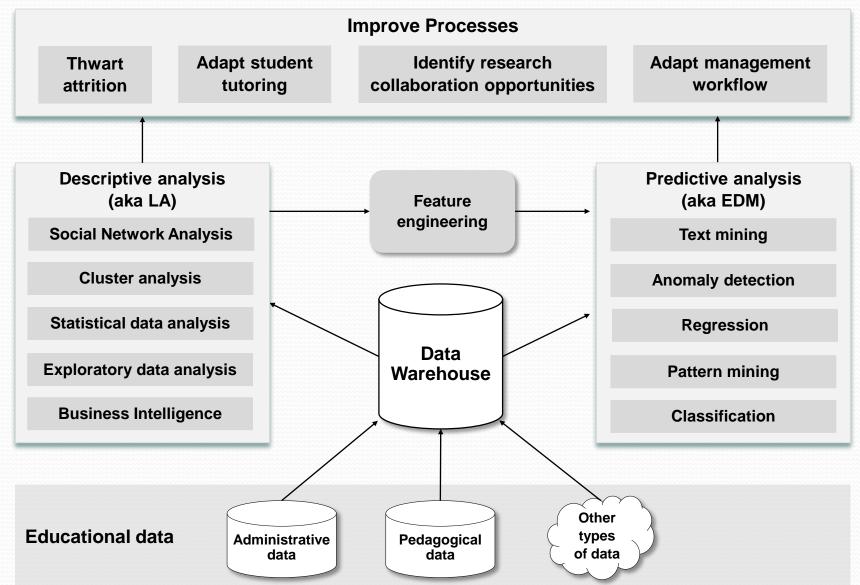
Pedagogical data

Data Analysis in Education

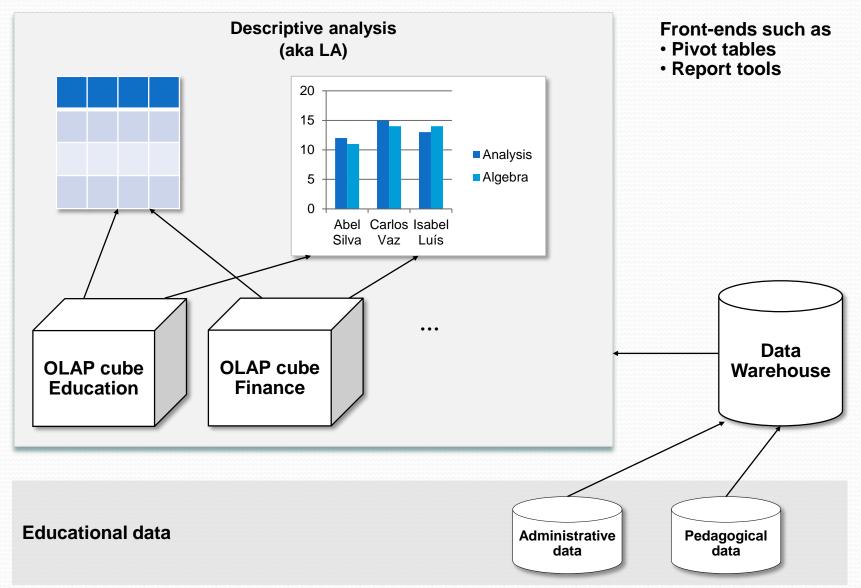
Overview of research



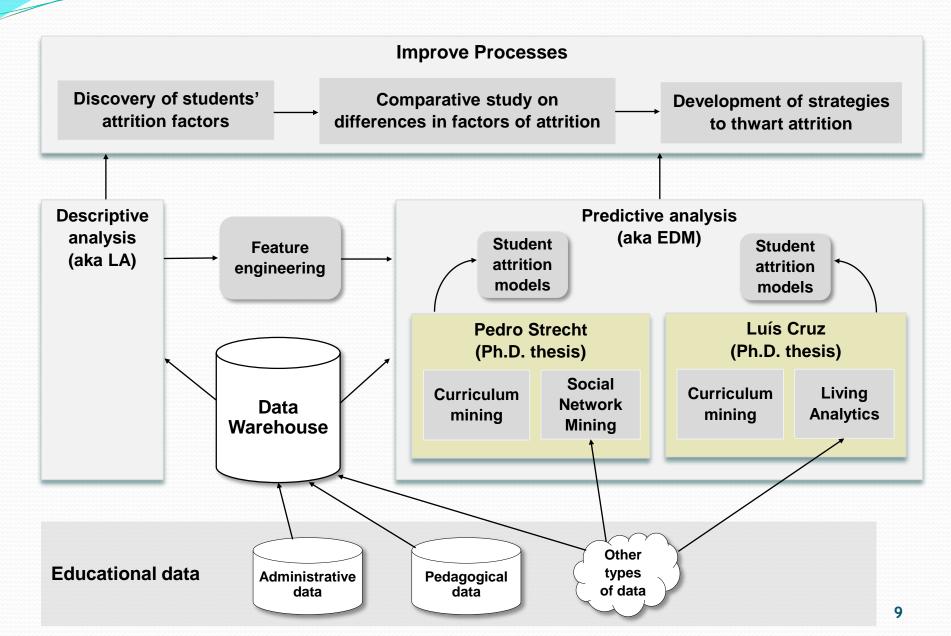
Educational DM & Learning Analytics at U.Porto: general perspective



Learning Analytics at U.Porto: current work



Educational DM at U.Porto: current work

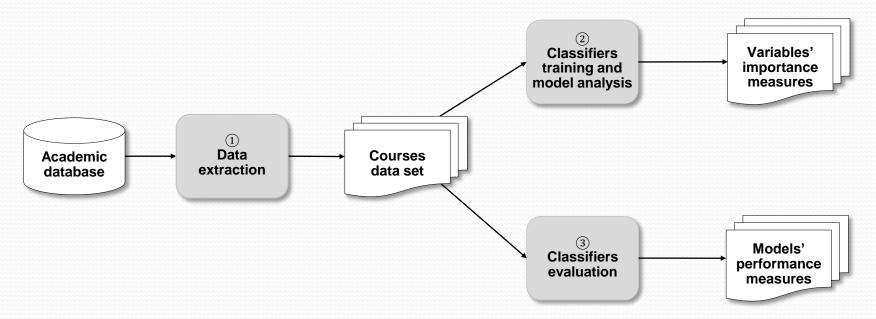


Summary

- Data Analysis in Education
- ... at the University of Porto
- An illustrative example of an EDM task
- Conclusions and Future work

An illustrative example of an EDM task

- System to predict if a student will pass or fail a course
- Using administrative data from UIS
- Three different processes



Data extraction

14 variables extracted relating to each student

Group	Variable				
	Age				
	Sex				
	Marital status				
Socio-demographic information	Nationality				
	Displaced				
	Scholarship				
	Special needs				
Admission information	Type of admission				
	Type of student				
	Status of student				
Enrollment information	Years of enrollment				
	Delayed courses				
	Type of dedication				
Financial information	Debt situation				

8 courses were selected

Data extraction

Data set sample for course Mathematics II

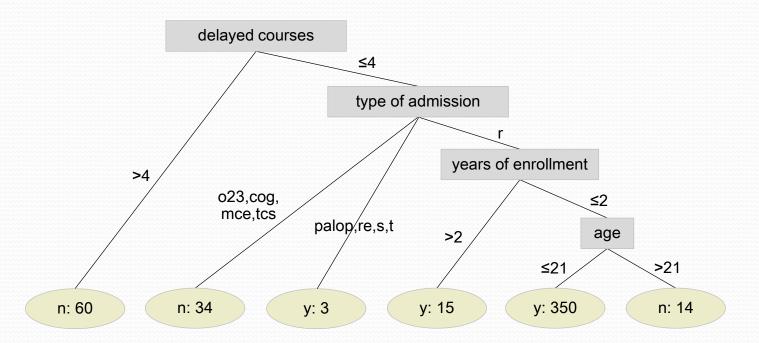
Age	Sex	Marital status	Nationality	Displaced	Scholarship	Special needs	Type of admission	Type of student	Status of student	Years of enrollment	Delayed courses	Type of dedication	Debt situation	Approval
18	m	S	pt	у	n	n	r	r	0	0	0	f	n	n
32	m	m	pt	n	n	n	tcs	r	О	8	12	р	n	n
18	f	S	pt	у	n	n	r	r	О	0	0	f	n	У
18	m	S	pt	n	n	n	r	r	О	0	0	f	n	У
22	m	S	br	n	n	n	to	r	0	1	0	f	n	У

Classifiers training and model analysis Experimental setup



Classifiers training and model analysis Classifier training

- Classifiers predict categorical class labels
- Students are classified as either having as either having passed or failed
- Example of decision tree for course Mathematics II:



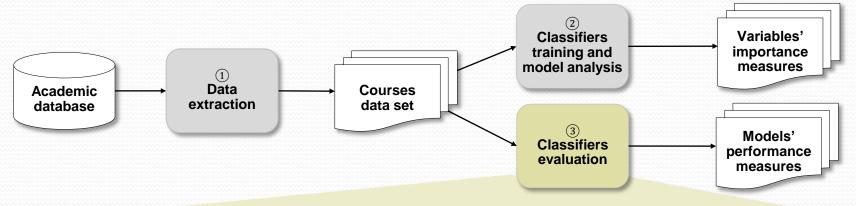
Classifiers training and model analysis Preliminary results

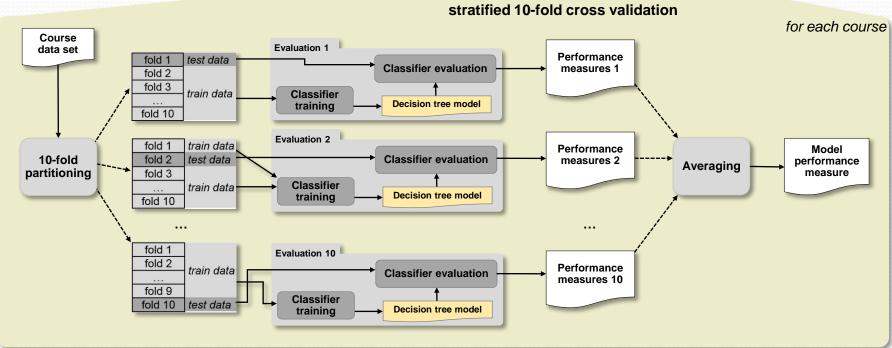
Variables' importance measure for each course

		I _p (%)													
Course		Age	Sex	Marital status	Nationality	Displaced	Scholarship	Special needs	Type of admission	Type of student	Status of student	Years of enrollment	Delayed courses	Type of dedication	Debt situation
Economic History	1								100.0						
Organic Chemistry II	3								11.5			72.1	100.0		
Neuroanatomy	2											11.8	100.0		
Marketing	1											100.0			
Anatomy I	1												100.0		
Anatomy II	4								36.7		20.9	18.4	100.0		
Mathematics II	4	76.4							87.4			79.6	100.0		
Introduction to Linear Signals and Systems	3	100.0							93.1				83.9		

Classifiers evaluation

Experimental setup





Classifiers evaluation

Performance results

Model performance for each course (10 experiments)

Course	Number of	Category dis	F1			
Course	examples	у	n	(avg ± std.dev)		
Economic History	656	72	28	0.83 ± 0.003		
Organic Chemistry II	562	21	79	0.10 ± 0.030		
Neuroanatomy	542	94	6	0.96 ± 0.001		
Marketing	519	90	10	0.95 ± 0.002		
Anatomy I	518	73	27	0.85 ± 0.003		
Anatomy II	477	73	27	0.84 ± 0.004		
Mathematics II	476	61	39	0.78 ± 0.005		
Introduction to Linear Signals and Systems	475	55	45	0.71 ± 0.099		

Conclusions

- There is a global effort of University of Porto to improve their processes using
 BI and DM
- This work presents the preliminary experiments on Educational Data Mining
 - Using administrative data
 - Collecting 14 variables from students enrolled in 8 courses
 - Interpreting results from decision tree models
- Results indicate that
 - Decision trees are quite different from one another
 - Delayed courses is the most important variable
 - Will this pattern hold if more courses are used?
 - Model performance is quite acceptable overall

Future work

- Study the reasons for the variability of variables in each course
- Alternatives to combine decision trees into
 - a single consensual tree
 - small set of trees

that represent the general knowledge about the success/failure behavior across all the University

 Although the focus is on EDM, such an approach will be interesting for other areas of application

Questions

